Electromagnetic Band Gap Structures In Antenna Engineering The Cambridge RF and Microwave Engineering Series | 992db30e05637705a5b192ee5da552c

Electromagnetic Band Gap Structures in Antenna Engineering

Bandwidth Enhancement on Microstrip Rectangular Patch Antenna with Electromagnetic Band Gap Structure for WiFi Application

Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, this book develops the theoretical tools of photonic crystals using the principles of linear algebra and wave equation, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetic scattering. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on design techniques using topology optimization, and a detailed discussion of electromagnetic coupling at photonic crystal interfaces, and more. Richly illustrated and accessible written, Photonic Crystals is an indispensable resource for students and researchers. Extensively revised and expanded Features improved graphics throughout the text, new chapters on photonic-crystal fibers and combined index-and-band-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection and refraction, computational photonics, and more.

Composite Dielectric Structures Exhibiting Electromagnetic Band-gap

This book presents a new global optimization technique using Taguchi's method and its applications in electromagnetics and antenna engineering. Compared with traditional optimization techniques, Taguchi's optimization method is easy to implement and very efficient in reaching optimum solutio. Taguchi's optimization method is developed based on the orthogonal array (OA) concept, which offers a systematic and efficient way to select design parameters. The book illustrates the basic implementation procedure of Taguchi's optimization method and discusses various advanced techniques for performance improvement. In addition, the integration of Taguchi's optimization method with commercial electromagnetic software is introduced in the book. The proposed optimization method is used in various linear antenna arrays, microstrip filters, and ultra-wideband antenna for the requirements of increasing bandwidth and miniaturisation.

Reflectarray Antennas

Reflectarray antennas with increased in frequency and convergence toward mixed signal systems, supplying stable voltages to integrated circuits and blocking noise coupling in the systems are major problems. Electromagnetic band gap (EBG) structures have been in the limelight for power/ground noise isolation in mixed signal applications due to their capability to suppress unwanted electromagnetic mode transmission in certain frequency bands. The EBG structures have proven effective in isolating the power-ground noise in systems that use a common power supply. However, while the EBG structures have the potential to present many advantages in noise suppression applications, there is no method in the prior art that enables reliable and efficient synthesis of these EBG structures. Therefore, in this research, a novel EBG synthesis method for mixed signal applications is presented. For one-dimensional periodic structures, three new approaches such as current path approximation method, border to border radius, power loss method have been introduced and combined for synthesis. For two-dimensional EBG structures, a novel EBG synthesis method using genetic algorithm (GA) has been presented. In this method, genetic algorithm (GA) is utilized as a solution-searching technique. Synthesis procedure has been automated by combining GA with multiobjective method and dispersion diagram analysis method. As a real application for EBG structures, EBG structures have been applied to a QCA ADC load board design for power-ground noise suppression.

Bandwidth Enhancement on Microstrip Rectangular Patch Antenna with Electromagnetic Band Gap Structure for WiFi Application

This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetic scattering. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on design techniques using topology optimization, and a detailed discussion of electromagnetic coupling at photonic crystal interfaces, and more. Richly illustrated and accessible written, Photonic Crystals is an indispensable resource for students and researchers. Extensively revised and expanded Features improved graphics throughout the text, new chapters on photonic-crystal fibers and combined index-and-band-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection and refraction, computational photonics, and more.

Composite Dielectric Structures Exhibiting Electromagnetic Band-gap

This book presents a new global optimization technique using Taguchi's method and its applications in electromagnetics and antenna engineering. Compared with traditional optimization techniques, Taguchi's optimization method is easy to implement and very efficient in reaching optimum solutio. Taguchi's optimization method is developed based on the orthogonal array (OA) concept, which offers a systematic and efficient way to select design parameters. The book illustrates the basic implementation procedure of Taguchi's optimization method and discusses various advanced techniques for performance improvement. In addition, the integration of Taguchi's optimization method with commercial electromagnetic software is introduced in the book. The proposed optimization method is used in various linear antenna arrays, microstrip filters, and ultra-wideband antenna for the requirements of increasing bandwidth and miniaturisation.

Reflectarray Antennas

Reflectarray antennas with increased in frequency and convergence toward mixed signal systems, supplying stable voltages to integrated circuits and blocking noise coupling in the systems are major problems. Electromagnetic band gap (EBG) structures have been in the limelight for power/ground noise isolation in mixed signal applications due to their capability to suppress unwanted electromagnetic mode transmission in certain frequency bands. The EBG structures have proven effective in isolating the power-ground noise in systems that use a common power supply. However, while the EBG structures have the potential to present many advantages in noise suppression applications, there is no method in the prior art that enables reliable and efficient synthesis of these EBG structures. Therefore, in this research, a novel EBG synthesis method for mixed signal applications is presented. For one-dimensional periodic structures, three new approaches such as current path approximation method, border to border radius, power loss method have been introduced and combined for synthesis. For two-dimensional EBG structures, a novel EBG synthesis method using genetic algorithm (GA) has been presented. In this method, genetic algorithm (GA) is utilized as a solution-searching technique. Synthesis procedure has been automated by combining GA with multiobjective method and dispersion diagram analysis method. As a real application for EBG structures, EBG structures have been applied to a QCA ADC load board design for power-ground noise suppression.
Metamaterials

Proceedings of International Conference on Antenna Technology

Electromagnetic Band Gap Structures in Antenna Engineering This book describes the process of designing and analyzing the microstrip antenna using EBG Structures. Since microstrip antennas are one of the most popular antennas that are used for high performance applications, these antennas have various advantages but they suffer from the narrow bandwidth. In order to overcome the narrow bandwidth Electromagnetic Band Gap (EBG) Structures can be used. The process of designing of the Electromagnetic Band Gap structures and various types of microstrip antennas are given in detail.

Electromagnetic Band Gap Antenna Structure Incorporated with Antenna

Electromagnetic Band-gap Structures for Power and Signal Integrity in Multilayer Printed Circuit Boards

The Design of Photonic and Electromagnetic Band-gap Structures

Enhancement in Bandwidth of Microstrip Antennas Using EBG Structures In the field of electromagnetic wave engineering, the recent interest is on Photonic crystal antennas which includes metamaterial technology, Electromagnetic Band Gap structures, etc. This text book gives a detailed study on electromagnetic band-gap (EBG) structures and applications, along with the metamaterial microwave absorbers.

Electromagnetic Band Gap Structures

The Marvels of Electromagnetic Band Gap (EBG) Structures

Proceedings of the 2015 Chinese Intelligent Systems Conference

The book gives a powerful computational engine for the analysis and design of photonic structures. The main purpose of these structures is to manipulate the propagation of electromagnetic waves. The book focuses on the most recent development in the field, including the application of EBG structures in various areas, such as telecommunications, radar, and microstrip antennas. It is suitable for researchers, engineers, and students in the field of electromagnetic wave engineering.

Electromagnetic Band-gap Structures in Antenna Engineering

Radar Cross Section Reduction Using Electromagnetic Band-gap Checkerboard Surfaces

Electromagnetic Band Gap (EBG) Structures

The book provides an overview of the principles and applications of EBG structures, including their use in microstrip antennas. It covers the basic concepts of EBG structures and their advantages over conventional antennas, such as increased bandwidth and reduced mutual coupling. The book also includes chapters on the design and optimization of EBG structures for various applications, such as wireless communication systems and radar systems.

Electromagnetic Band Gap (EBG) and Its Application in Analog-to-digital Converter Load Boards

High Impedance Surface - Electromagnetic Band Gap (HIS-EBG) This book presents selected research papers from the 2015 Chinese Intelligent Systems Conference (CISC-15), held in Yangzhou, China. The topics covered include multi-agent systems, evolutionary computation, artificial intelligence, complex systems, computer intelligent, and such conventional, intelligent control, advanced control technology, robotics and applications, intelligent information processing, iterative learning control, and machine learning. Engineers and researchers from academia, industry and the government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.

Electromagnetic Band Gap (EBG) Structure Incorporated with Microstrip Antennas An essential guide to the background, design, and application of common-mode filtering structures in modern high-speed differential communication links Written by a team of experts in the field, Electromagnetic Bandgap (EBG) Structures describes the design and application of common-mode filtering structures for power integrity and applications such as common mode filtering in high-speed printed circuit boards, especially for boards in high data-rate systems. The authors describe the classic applications of electromagnetic bandgap (EBG) structures and the phenomena of common mode generation in high-speed digital data. The text also explores the fundamental electromagnetic mechanisms of the functioning of planar EBGs and considers the impact of planar EBGs on the digital signal propagation of single ended and differential interconnects routed on top or between EBG layers. The authors also provide several comparisons between measurement and electromagnetic simulations that validate the proposed EBG filters' design accuracy. This important resource - Presents design guidelines for planar based EBG common mode filters for high speed digital systems - Provides systematic analysis of the fundamental mechanisms of planar EBG structures - Offers detailed design methodology to create EBG filters without the need for repeated full-wave electromagnetic analysis - Demonstrates techniques for use in practical real-world designs Electromagnetic Bandgap (EBG) Structures: Common Mode Filters for High Speed Digital Systems offers an introduction to the background, design, and application of common-mode filtering structures in modern high-speed digital communication links, a critical issue in today's high-speed and high-performance systems.

Advanced Electromagnetic Applications

Microstrip Array Antenna Incorporated with Electromagnetic Band Gap Structure Electromagnetic band-gap (EBG) structures have noteworthy electromagnetic characteristics that include their phase variations with frequency. When combining perfect electric conductor (PEC) and EBG structures on the same ground plane, the scattering fields of the ground plane are altered because of the scattering properties of EBG structures. This book covers the development of EBG structures and their applications in modern electromagnetic systems.

Modelling and Simulation of Electromagnetic Band Gap Structures The book provides an introduction to the theory of microstrip antennas and the simulation of their behavior in order to predict their performance. It covers the design and analysis of microstrip antennas, including the effects of various factors such as the substrate material, feeding network, and polarization, on the antenna's radiation pattern, impedance, and efficiency. The book is suitable for researchers, engineers, and students in the field of microstrip antenna technology.

Microwave Mirrors, Directional Antennas, Resonators (especially in the 2 GHz region), Filters, Waveguides, Y Splitters, and resonant microstrip antennas. The third area covers fundamentally new physical phenomena in condensed matter physics and quantum optics. An excellent review of recent development, covering theoretical, experimental, and applied aspects. Interesting and stimulating reading for active researchers, as well as a useful reference for non-specialists.

Photonic Band Gap Materials

Compact Electromagnetic Band-gap Structures (EBG) and Its Applications in Antenna Systems Photonic band gap crystals offer unique ways to tailor the dielectric properties and the propagation of electromagnetic waves. In analogy to electrons in a crystal, the electromagnetic fields propagate in a structure with a periodically-modulated dielectric constant, which is analogous to a photonic band gap. The book describes the design and implementation of photonic band gap structures for wireless communication systems, including microstrip antennas, filters, and integrated circuits. The book is suitable for researchers, engineers, and students in the field of electromagnetic wave engineering.

Electromagnetic Band Gap (EBG) Synthesis and Its Application in Modern High-speed Differential Communication Systems

The book covers the design and implementation of microstrip antennas with EBG structures, including the use of EBG structures in modern high-speed differential communication systems. It includes chapters on the design and optimization of microstrip antennas with EBG structures, the use of EBG structures in high-speed links, and the design of novel antennas with EBG structures. The book is suitable for researchers, engineers, and students in the field of microstrip antenna technology.

Electromagnetic Band-gap Structures in Antenna Engineering

Electromagnetic Band-gap Structures for Power and Signal Integrity in Multilayer Printed Circuit Boards

Electromagnetic Band-gap Structures in Antenna Engineering

Photonic Crystals This book, first published in 2008, is a detailed account of electromagnetic band-gap (EBG) theory, analysis, and applications, ideal for researchers and engineers.

Electromagnetic Band-gap Structures (EBG) and Its Application in Modern High-speed Differential Communication Systems

Wavelength Band-notch Antenna Using Electromagnetic Band-gap Structure with Dual 5G Bands This dissertation is focused on design of compact electromagnetic magnetic band-gap structures (EBG). Several popular compact techniques are introduced and evaluated with equivalent surface impedance model. A novel compact EBG structure is investigated. Compared to the conventional unipolar compact photonic band gap (UC-PBG) structure, a size reduction of 64.7% is achieved. A distinct band gap is observed at 2.45 GHz with around 100 MHz bandwidth and zero reflection phase. Antenna applications of this novel EBG structure are also presented and antenna performance is evaluated. Simulation results further verify its characteristic of suppressing surface waves. For the EBG patch antenna, a more focused radiation pattern is obtained compared to a normal patch antenna. For an antenna array, the presence of EBG reduces the mutual coupling between the two radiating elements by 6 dB.

Electromagnetic Band-gap Structures in Antenna Engineering

Photonic Crystals This book, first published in 2008, is a detailed account of electromagnetic band-gap (EBG) theory, analysis, and applications, ideal for researchers and engineers.

Proceedings of the 2015 Chinese Intelligent Systems Conference

On the Stopband Characterization of Periodic Structures This book provides engineers with a comprehensive review of the state-of-the-art in reflectarray antenna research and development. The authors describe, in detail, design procedures for a wide range of applications, including broadband, multi-band, multi-beam, contour-beam, beam-scanning, and conformal reflectarray antennas. They provide sufficient coverage of basic reflector theory to fully understand reflectarray antenna design and analysis such that the readers can pursue reflectarray research on their own. Throughout the book numerous illustrative
design examples including numerical and experimental results are provided. Featuring in-depth theoretical analysis along with practical design examples, Reflectarray Antennas is an excellent text/reference for engineering graduate students, researchers, and engineers in the field of antennas. It belongs on the bookshelves of university libraries, research institutes, and industrial labs and research facilities.